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Abstract

A numerical study is made for the ¯ow of a density-strati®ed ¯uid in a vertical cylinder with a rotating top lid. Under the

Boussinesq-¯uid assumption, the governing Navier±Stokes equations are numerically solved. For large rotational Reynolds number

Re and the cylinder aspect ratio A � O(1), details of ¯ow and temperature ®elds are displayed. The e�ect of the Prandtl number on

global ¯ow patterns is scrutinized for both gravitationally unstable and gravitationally stable con®gurations. Of particular interest is

the behavior of the vortex breakdown stagnation bubble under the in¯uence of buoyancy. Plots are presented for the azimuthal

vorticity ®elds, in line with the simple axisymmetric inviscid kinematic consideration. An explicit comparison is made for the in-

dividual terms appearing in the azimuthal vorticity equation. For both gravitationally unstable and gravitationally stable con®g-

urations, the argument based on the behavior of azimuthal vorticity is seen to produce predictions consistent with the numerical

results. Ó 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

The motion of a viscous ¯uid contained in a closed verti-
cally mounted cylindrical vessel, with a rotating endwall disk
lid, poses an attractive example of con®ned swirling ¯ow. The
major ¯ow characteristics are known to be determined by two
nondimensional parameters, i.e., the rotational Reynolds
number Re º XR2/m, and aspect ratio of the cylinder A º H/R,
in which the cylinder radius is R, cylinder height H, rotation
rate of the lid X, and kinematic viscosity of the ¯uid m, re-
spectively. Flows of technological relevance are typically in the
range Re � 1 and A � O(1).

The overall ¯ow patterns are such that the dominant ve-
locity component is in the azimuthal direction. However, it is
noted that meridional ¯ows of varying character, although
small in magnitude, are induced, and the physical implications
of these meridional ¯ows are complex and far-reaching. For a
constant-density ¯uid, systematic experiments were conducted
by Escudier (1984) to visualize the salient features of meri-
dional ¯ows as both Re and A encompass practically attain-
able and dynamically meaningful ranges. As well documented,
the global meridional ¯ow structure is characterized by the
presence of Ekman boundary layers on the endwall disks, and,
in the interior core, an axial motion principally in the direction
toward the rotating disk exists. This produces general meri-
dional circulation patterns, and the return circuit is carried via
sidewall boundary layers adjacent to the cylindrical wall. This
paradigmatic picture has been veri®ed in preceding experi-
mental and numerical investigations [e.g., Pao, 1970, 1972;
Bertela and Gori, 1982; Escudier, 1984].

For AJ1.20 and ReJ1020, signi®cant structural changes
are seen to take place in the above-illustrated meridional cir-
culation patterns. With a proper combination of A and Re, the
meridional motion in the vicinity of the axis ceases to be
monotonic; stagnation points occur on the axis, accompanied
by a closed stream surface, which leads to a stagnation bubble.
This phenomenon has been interpreted to be a manifestation
of the celebrated vortex breakdown, which has been observed
in a number of seemingly di�erent ¯ow conditions [e.g., Es-
cudier, 1986, 1988]. By a meticulous experimental program,
Escudier (1984) constructed a Re±A diagram, identifying the
parameter space in which the above-described vortex break-
down has been observed to occur.

E�orts to gain a fundamental understanding of the ap-
pearance of the stagnation bubble and, in a broader context,
attempts to ascertain the dynamic mechanism of vortex
breakdown phenomenon have been reported in the literature.
Several descriptive arguments have been advanced, however,
as remarked by BruÈcker and Althaus (1995), physically con-
vincing explanations on the basic nature of vortex breakdown
have yet to be re®ned. Lopez (1990) and Brown and Lopez
(1990), by examining the detailed numerical solutions, devised
a simpli®ed analytic model to illuminate the physical mecha-
nisms for vortex breakdown. For Re � 1, they proposed an
approximate approach to explore the physical mechanism for
vortex breakdown by using a simplistic, steady, inviscid axi-
symmetric equation of motion. The key element of their en-
deavor lies in examining directly, not through perturbations of
an initial stream function, the behavior of azimuthal vorticity.
Lopez (1990) and Brown and Lopez (1990) clearly demon-
strated that their criterion for vortex breakdown, which is
based on the generation of negative azimuthal vorticity on
some stream surfaces, leads to consistent results in predicting
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the occurrence of breakdown bubbles. These inviscid predic-
tions were also compared favorably against the numerical so-
lutions of the full Navier±Stokes equations as well as the
visualizations (Escudier, 1984) for which breakdown occurs.
More recently, the validity of these theoretical reasonings
suggested by Brown and Lopez was positively tested by par-
ticle-tracking velocimetry data of BruÈcker and Althaus (1995).

It is important to notice that the majority of previous in-
vestigations have dealt with the case of a homogeneous ¯uid.
Depictions of the ¯ow ®eld of a density-strati®ed ¯uid, with
substantial buoyancy e�ects, have not been addressed in suf-
®cient detail. Since buoyancy directly a�ects the vertical ¯ow,
and, therefore, the meridional motion in general, the axial
(vertical) ¯ow structure and the behavior of the attendant
stagnation bubble are anticipated to be signi®cantly altered by
the introduction of nonhomogeneity of density ®eld. Lugt and
Abboud (1987) secured numerical solutions to the axisym-
metric Navier±Stokes equations using a Boussinesq-¯uid, with
the temperature at the bottom stationary endwall disk higher
than that at the top rotating disk. The vertical sidewall was
thermally insulated. This con®guration represents an overall
unstable strati®cation, and only the results of a small selected
number of exemplary cases were presented. Numerically ob-
tained global ®elds of meridional ¯ows and isotherm contours
were illustrated, and these led to the observation that the oc-
currence and properties of the stagnation bubble are strongly
in¯uenced by the buoyancy e�ect. However, in the numerical
account of Lugt and Abboud (1987), no detailed explorations
were made into the physical mechanisms of the changes in
meridional ¯ow and in vortex breakdown phenomenon. As
remarked by Brown and Lopez (1990), no speci®c information
was o�ered in Lugt and Abboud (1987) on the distribution of
azimuthal vorticity, among others, which would help explain
the dynamics pertinent to the development of stagnation
bubble.

Recently, Kim and Hyun (1997) produced numerical solu-
tions to the governing Navier±Stokes equations when the
overriding strati®cation is stable, i.e., the temperature at the
top rotating lid, TT is higher than that at the bottom stationary
lid, TL. The focus was to describe the alterations in meridional
¯ow patterns as the rotational e�ect, which is denoted by the
afore-de®ned Reynolds number Re, and the buoyancy e�ect
compete for the control of interior ¯ow. The additional non-
dimensional parameter for this purpose is the Richardson
number RiºgbDT/RX2, where g is gravity, b the coe�cient of
thermometric expansion of the ¯uid, DT the imposed tem-
perature di�erence between the top and bottom lids, i.e.,
DTºTT ) TL. The stagnation bubble, which forms when Re is
very large, disappears when Ri J O(1), since, under substan-
tial stabilizing buoyancy e�ects, vertical velocities are sup-
pressed. Radial pro®les of local heat transfer coe�cients at the
lids were plotted, and the impacts of rotation and of buoyancy
were scrutinized. However, in Kim and Hyun (1997), the pa-
rameter spaces for numerical calculations were limited, and,
more importantly, no attempts were made to ascertain the
behavior of vortex breakdown as the buoyancy e�ect becomes
substantial.

The present study is motivated by the above-stated un-
ful®lled tasks. Emphasis is placed on gaining further insight
into the depiction and possible explanation of the behavior of
meridional ¯ows, in particular, the stagnation bubble, under
buoyancy e�ect. Speci®cally, the numerical solutions will be
examined in a manner similar to the juxtaposition of Lopez
(1990) and Brown and Lopez (1990). Attention will be di-
rected to the question of whether the simpli®ed inviscid an-
alyses of Brown and Lopez for a homogeneous ¯uid can be
extended, with modi®cation, to the strati®ed ¯ow in hand. To
this end, axial-plane contour maps of the azimuthal vorticity

will be scrutinized, and the qualitative validity of the theo-
retical prediction of Brown and Lopez will be appraised with
respect to its explanation on the formation of stagnation
bubble.

2. The model

As stated, a Boussinesq ¯uid, which satis®es the relation-
ship q � qL�1ÿ b�T ÿ TL��, where q and T refer to density and
temperature, respectively, ®lls the closed cylindrical container.
The motion is generated by the steady rotation of the top lid as
sketched in Fig. 1. The physical properties of the ¯uid, such as
the dynamic viscosity l�� qLm�, speci®c heat Cp and thermal
di�usivity j are taken to be constant. The governing axisym-
metric Navier±Stokes equations in nondimensional form, ex-
pressed in cylindrical frame (r,/,z) with corresponding velocity
components (u,v,w), are well known [e.g., see Lugt and Abboud,
1987], and they will not be reproduced here. Non-
dimensionalization is performed by adopting R, RX and qL�
�RX�2 for scales of length, velocity and pressure, respectively.
The dimensionless temperature h is de®ned as h � �T ÿ TL�=DT :

The numerical solution procedure selected here is based on
the widely used SIMPLER algorithm (Patankar, 1980), in
conjunction with the QUICK scheme (Hayase et al., 1994).
The entire numerical solution techniques represent an ex-
panded version of the earlier numerical investigations of Kim
and Hyun (1997), which displayed broad consistency with the
published results (e.g., Lugt and Abboud, 1987).

The mesh was stretched to cluster grid points near the
boundaries of the computational domain. The grid network
was designed such that seven grid points were placed inside the
Ekman layers. For the majority of calculations, the (60 ´ 90)
grid in the (r±z) plane was deployed. Convergence was de-
clared when the maximum relative di�erence between succes-
sive iteration steps fell below 10ÿ6. Extensive grid convergence
tests were carried out. For several typical parameter sets, more
re®ned grids were utilized to ascertain the grid-independent
results. For example, the maximal relative discrepancy in the
values of meridional stream function was less than 1% between

Fig. 1. Geometry and coordinate system.
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the (60 ´ 90) and (99 ´ 150) grids. These tests established the
reliability and accuracy of the present numerical procedures.

3. Results and discussion

Before proceeding further, it is useful to describe, in phys-
ical terms, the qualitative dynamical ingredients in the general
¯ow situations which are relevant to vortex breakdown. For
the purpose of explanation, the aspect ratio A is ®xed, e.g.,
A� 2.0, and Re is increased. Due to the rotation of the top lid,
in the bulk of interior core, a generally upward motion pre-
vails, and in the sidewall boundary layer, a downward ¯ow
exists to maintain mass continuity. Near the bottom corner
(r� 1, z� 0), the downward ¯ow meets the bottom stationary
disk, turns in the radially inward direction in the bottom Ek-
man layer, and ®nally moves upward at small and moderate
radii to ®ll the interior core. When Re is low, the ¯ow in the
central bottom region is monotonic owing to comparatively
large viscous e�ects. However, when Re exceeds a threshold
value, a di�erent picture emerges. In comparative terms, the
azimuthal velocity v in the central region, as the ¯uid leaves
out of the bottom Ekman layer, is strengthened whereas the
meridional ¯ow weakens near the axis. This produces diverg-
ing helical streamlines, which in turn gives rise to a pressure
increase at the axis, thereby creating an environment favorable
for the appearance of a stagnation bubble. Alternatively, the
combination of a smaller w and a larger v increases the local
swirl angle / � arctan�v=w� near the axis. The crux of this
argument is that, if / exceeds a certain value, the pressure
increase at the axis due to diverging helical streamlines leads to
the situation whereby w becomes zero and negative in a certain
region locally. This indicates the formation of a stagnation
bubble. It is emphasized here that the interplay among the
above dynamical elements is extremely subtle and delicate.
When Re is too large, the relative increase in magnitude of w is
bigger than that of v, implying that the divergence of helical
streamlines is not su�cient to cause the formation of a stag-
nation bubble. In summary, vortex breakdown phenomenon,
which is manifested in the presence of stagnation bubble on the
axis, can be explained by the behavior of v and its interaction
with the meridional ¯ows in the interior core at small radii.

3.1. Under a gravitationally unstable temperature contrast
(Ri < 0).

A limited number of numerical solutions for a gravita-
tionally unstable con®guration, [Ri < 0], i.e., when TT < TL,
were examined by Lugt and Abboud (1987). It was shown that
the size of stagnation bubble grows when |Ri| is small and
Pr � 1. It is worth mentioning that, unless |Ri| is very small,
no steady-state solutions are obtained, and this tends to re-
strict further the range of |Ri| in simulating ¯ows with gravi-
tationally unstable con®guration.

An exemplary set of results, illustrating the impact of Pr, is
displayed in Fig. 2 for Re� 1600, A� 2.0, Ri�)0.01, showing
the meridional stream function w, h, and curvature term v2/r.
Here, w is de®ned such that

u � 1

r
ow
oz
; w � ÿ 1

r
ow
or
:

Consistent with the regime diagram of Escudier for a ho-
mogeneous ¯uid (Ri� 0), at this combination of Re and A, a
stagnation bubble is discernible on the rotation axis [see
Fig. 2(a)]. For a strati®ed ¯uid, when Pr is small, the size of the
bubble is seen to be larger than for a homogeneous ¯uid. Until
Pr reaches O(1), the bubble grows in size. However, when Pr is
very large, the bubble disappears, as depicted in Fig. 2(d).

These observations are in close agreement with the assertions
of Lugt and Abboud.

The temperature ®elds are revealing. When Pr is small,
much of the ¯ow region is dominated by conduction. There-
fore, the temperature distribution is close to a linear pro®le in
the vertical direction, which, in this case, gives rise to gravi-
tationally destabilizing buoyancy. Consequently, the meri-
dional ¯ows are generally intensi®ed. However, when Pr is
large, the interior ¯ow is controlled by convection, which
yields a nearly uniform temperature in the bulk of the interior;
the e�ective buoyancy in the core is very weak. Thin boundary
layer-type regions are seen adjacent to the endwall disks to
accommodate the imposed temperature conditions.

In order to gain an understanding of the dynamics, the
azimuthal vorticity g�� ou=ozÿ ow=or� is plotted in Fig. 3. In
a comprehensive discussion on the dynamic condition leading
to the formation of stagnation bubble (s) for a homogeneous
¯uid, Lopez (1990) and Brown and Lopez (1990) emphasized
the signi®cance of the behavior of g, especially in the neigh-
borhood of the axis. They made a thorough analysis of the
velocity ®eld induced by vorticity in the context of inviscid
equations. It was ascertained that, for a stagnation bubble to
occur, negative values of g are needed on some stream surfaces
in the meridional plane. Lopez (1990) argued that negative
values of g give rise to wavy structure of meridional ¯ows as a
preliminary process to produce a stagnation bubble. Speci®-
cally, the axial velocity w on the axis can be expressed by use of
g (see Brown and Lopez, 1990):

w�0; z� � 1

2

Z1
ÿ1

Z1
0

r2g�r; z0�
�r2 � �zÿ z0�2�3=2

dr dz0: �1�

Obviously, in order to have a negative value of w(0,z),
which leads to the occurrence of stagnation bubble, it is nec-
essary to have negative values of g somewhere in the ¯ow ®eld.
Furthermore, since w(0,z) is acquired through the above inte-
gral relations, a negative value of w(0,z) is more likely to be
realized if g takes negative values in wider regions of ¯ow ®eld.
This assertion, which is based on inviscid kinematic consider-
ation, was a corner stone in the far-reaching numerical analysis
of Lopez (1990) and Brown and Lopez (1990) for a homoge-
neous ¯uid. The g-plots exhibited in Fig. 3 for a strati®ed ¯uid
are largely in accord with the above ®ndings of Lopez and
Brown. It is evident in Fig. 3 that larger negative values of g
are seen in broader areas when the stagnation bubble is present
than when no stagnation bubble occurs.

In an e�ort to examine in detail the mechanism of vortex
breakdown, it is advantageous to gauge the relative magni-
tudes of individual terms in the azimuthal vorticity equation,
as shown in Fig. 4.

�2�

First, for a homogeneous ¯uid [h� const., (IV)� 0], the
nonlinear advection (I) takes comparatively large values in the
upstream region of the stagnation bubble. As can be inferred
from the plot of v2/r of Fig. 2, the radially inward ¯ows in the
interior core yield large angular velocities since angular mo-
mentum is conserved in inviscid environment. Therefore, the
principal balance is between (I) and the azimuthal velocity
shear term (II) in the bulk of the interior. The viscous term
(III) is substantially smaller than (I) and (II), and, expectedly,
(III) becomes moderate locally in the vicinity of the bubble. It
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should be pointed out that the role of the azimuthal velocity
shear term is crucial in bringing forth negative values of g.
Also, the viscous e�ect is not entirely negligible in the localized
region of stagnation bubble.

For a gravitationally unstable con®guration with small Pr,
the buoyancy e�ect (IV) is minor, and balance is maintained
between (I) and (II), which is qualitatively akin to the homo-
geneous-¯uid case. As is discernible in Fig. 2(b), oh=or is very
weak at small radii for this case. However, it is noted that the
magnitude of (II) is larger than for the homogeneous-¯uid
case. Clearly, since the overall strati®cation is unstable, the
meridional motions are intensi®ed in general, which leads to a
vigorous azimuthal velocity and to a strengthened azimuthal
velocity shear. This trend becomes more distinct as Pr grows to
O(1) [see Fig. 4(d) for Pr� 10.0]. The buoyancy e�ect (IV)
becomes appreciable, and, the role of (IV) is to produce pos-
itive values of g. This implies that the occurrence of stagnation

bubble, i.e., vortex breakdown, is opposed by the buoyancy
e�ect in this case. As is apparent in the temperature±®eld plot
of Fig. 2(d), the isotherms are mostly parallel and vertical at
small radii in the interior. Therefore, in this region, vertical
buoyancy is weak, which discourages noticeable invigorations
of meridional ¯ows. In summary, it is argued that the disap-
pearance of vortex breakdown bubble for large Pr, which was
reported previously by Lugt and Abboud (1987) as well, can be
explained by the tendency of the buoyancy term (IV) to oppose
the generation of negative values of g near the axis.

3.2. Under a gravitationally stable temperature contrast
(Ri > 0).

The numerical results for a gravitationally stable con®gu-
ration, i.e., when TT > TL, are exempli®ed in Figs. 5±8 for
Re� 1600 and A� 2.0.

Fig. 2. Plots of w, h, v2/r in the meridonal plane for gravitationally unstable con®guration. Conditions are Re� 1600 and A� 2.0. The contour

increments are Dw� 6.23 ´ 10ÿ4, Dh� 7.14 ´ 10ÿ2 and D(v2/r)� 0.01. (a) Homogeneous ¯uid [Ri� 0]; (b) Pr� 0.1, Ri�)0.01; (c) Pr� 1.0,

Ri�)0.01; (d) Pr� 10.0, Ri�)0.01. The maximum and minimum values of w are: (a) wmax � 1.34 ´ 10ÿ5, wmin�)8.22 ´ 10ÿ3; (b)

wmax� 1.08 ´ 10ÿ4, wmin �)9.34 ´ 10ÿ3; (c) wmax� 5.64 ´ 10ÿ5, wmin �)8.94 ´ 10ÿ3; (e) wmax� 5.62 ´ 10ÿ6, wmin�)8.23 ´ 10ÿ3. The maximum

values of h and v2/r are 1.0 and the minimum values of h and v2/r are 0 for all the cases.
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Fig. 4. Comparisons of the terms in the vorticity equation (2) along r� 0.1. Conditions are the same as in Fig. 2.

Fig. 3. Contour plots of azimuthal vorticity, g, in the meridional plane. Conditions are the same as in Fig. 2. Negative values of g are shown in dotted

lines.
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First, frames (i) of Fig. 5 illustrate the meridional ¯ow
when Ri is small. Notice that, for Pr � 1 [see frame (a) (i) of
Fig. 5], no stagnation bubble is seen. For Pr � O(1), a distinct
bubble is discernible on the axis, and the size of the bubble is
larger for Pr > O�1�. It is recalled that these qualitative fea-

tures are opposite to the case of Ri < 0. As the magnitude of
Ri increases, the suppression of vertical motions becomes more
e�ective, and the meridional ¯ows tend to be concentrated to
the upper portion of the cylinder. These characteristics are
manifested in Fig. 5, and this recon®rms the earlier ®ndings of
Kim and Hyun (1997). Due to the inhibition of vertical ¯ows,
the formation of the stagnation bubble is discouraged, as
demonstrated in Fig. 5.

Fig. 6 depicts the temperature ®eld. Obviously, when
Pr � 1, the dominance of conduction is apparent, and the
isotherms show a tendency leading to a vertically linear dis-

Fig. 5. w-Fields for gravitationally stable con®guration. Conditions

are Re� 1600, A� 2.0. The contour increment is Dw� 5.70 ´ 10ÿ4.

Values of Pr for the columns are: (a) Pr� 0.1; (b) Pr� 10.0; values of

Ri for the rows are: (i) Ri� 0.01; (ii) Ri� 0.1; (iii) Ri� 1.0. The

maximum and minimum values of w are: (a): (i) wmax� 9.54 ´ 10ÿ8,

wmin�)7.94 ´ 10ÿ3; (ii) wmax � 1.18 ´ 10ÿ4, wmin�)7.64 ´ 10ÿ3; (iii)

wmax� 6.80 ´ 10ÿ4, wmin �)6.62 ´ 10ÿ3; (b): (i) wmax� 1.61 ´ 10ÿ4,

wmin�)8.31 ´ 10ÿ3; (ii) wmax � 1.05 ´ 10ÿ4, wmin�)8.45 ´ 10ÿ3; (iii)

wmax� 1.75 ´ 10ÿ4, wmin�)8.51 ´ 10ÿ3.

Fig. 6. h-Fields for gravitationally stable con®guration. Conditions are

the same as in Fig. 5. The contour increment is Dh� 7.14 ´ 10ÿ2.

hmax� 1.0 and hmin� 0 for all the cases.
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tribution. This trend is more pronounced under a strong stable
strati®cation, as displayed in frame (a) (iii) of Fig. 6. When
Pr � 1, the in¯uence of convection prevails, which produces
regions of nearly-uniform temperature in which convective
activities are substantial.

Following the preceding assertions of Brown and Lopez,
plots of azimuthal vorticity g are presented in Fig. 7 for
Ri� 0.01. It is recalled that, as shown in Fig. 5, a stagnation
bubble appears for Ri� 0.01 and no bubble is seen for
RiJO(1) for these ¯ow conditions. Fig. 7 clearly exhibits that
large negative values of g are found in broader regions for the
case when a bubble exists.

This observation suggests that the kinematics-based argu-
ment of Brown and Lopez is qualitatively applicable to the
present problem, which predicts the dynamic environment fa-
vorable for the formation of vortex breakdown bubble.

In an e�ort to examine the dynamical elements leading to
negative values of g, Fig. 8 shows the term-by-term compari-
sons of the azimuthal vorticity equation (2). When Pr � 1 [see
Fig. 8(b)], the buoyancy term (IV) is negligible due to the
smallness of horizontal temperature gradient. Also, the azi-
muthal-velocity shear term (II) is insigni®cant compared to the
case of a homogeneous ¯uid [see Fig. 8(a)]. However, for
PrJO(1), the principal balance is maintained among the azi-
muthal-velocity shear term (II), nonlinear advection (I) and the
buoyancy (IV). It is noted that the role of buoyancy (IV) is to
generate negative g. Compiling these detailed observations, the

Fig. 8. Comparisons of the terms in the azimuthal vorticity equation (2) along r� 0.2. Conditions are Re� 1600, A� 2.0. (a) Homogeneous ¯uid

[Ri� 0]; (b) Pr� 0.1, Ri� 0.01; (c) Pr� 10.0, Ri� 0.01.

Fig. 7. Contour plots of azimuthal vorticity, g, in the meridional plane.

Conditions are Re� 1600, A� 2.0, Ri� 0.01. (a) Pr� 0.1; (b)

Pr� 10.0.
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major sources for the generation of negative g stem from the
horizontal temperature-gradient (IV) and the azimuthal-ve-
locity shear (II). It should be recalled that, for the case of
Ri < 0, the role of horizontal temperature-gradient was to
oppose the generation of negative g. For that case, negative g
was achieved mainly by the azimuthal-velocity shear term.

In summary, the thrust of the present computational en-
deavors has been given in exploring the mechanism of occur-
rence of vortex breakdown. For a gravitationally-unstable
con®guration, the parameter ranges were similar to those of
Lugt and Abboud (1987). Additional detailed information has
been provided on the distributions of h, m2/r, g, and the budgets
of individual terms of the azimuthal vorticity transport equa-
tion. For a gravitationally stable con®guration, the analysis of
Kim and Hyun (1997) was extended and modi®ed by adding
the above-stated results. In particular, emphasis was placed on
the behavior of vortex breakdown bubble as Pr varied, which
was not conducted previously.

4. Concluding remarks

The present numerical results demonstrate the signi®cance
of the behavior of azimuthal vorticity in predicting the oc-
currence of stagnation bubble. This is suggestive of the ap-
plicability of the inviscid, kinematics-based argument of Lopez
(1990) and Brown and Lopez (1990) to the descriptions of ¯ow
of a strati®ed ¯uid, for both gravitationally unstable and
gravitationally stable con®gurations.

By undergoing detailed comparisons of the terms com-
prising azimuthal vorticity equation, the relative importance of
nonlinear advection, azimuthal velocity shear, viscous e�ects is
assessed. When Pr � 1, the dominance of conduction is visi-
ble. Especially when Ri > 0, for Pr large, convection prevails,
which produces regions of nearly-uniform temperature.

Experimental veri®cations of these ¯ow processes involving
a strati®ed ¯uid have not been reported in the literature. Plans
are underway to embark on a systematic experimental pro-
gram to supply visualizations which would exhibit the explicit
in¯uence of buoyancy in lid-driven rotating ¯ows.
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